List 3

Directional derivatives, critical points

86. (a) Give the derivative of $\frac{x^{3}}{\sin (\pi y)}$ at the point $\left(4, \frac{1}{4}\right)$ in the direction $\hat{\imath}=[1,0]$. $f_{x}^{\prime}\left(4, \frac{1}{4}\right)=48 \sqrt{2}$
(b) Give the derivative of $\frac{x^{3}}{\sin (\pi y)}$ at the point $\left(4, \frac{1}{4}\right)$ in the direction $\hat{\jmath}=[0,1]$.

$$
f_{y}^{\prime}\left(4, \frac{1}{4}\right)=-64 \sqrt{2} \pi
$$

The directional derivative of $f(x, y)$ at the point (a, b) in the direction of the unit vector \hat{u} (a vector of length 1) is written as $f_{\hat{u}}^{\prime}(a, b)$ and can be calculated as

$$
f_{\hat{u}}^{\prime}(a, b)=\nabla f(a, b) \cdot \hat{u} .
$$

87. For $f(x, y)=x^{2} \sin (y)$, calculate the directional derivative at $\left(4, \frac{\pi}{3}\right)$ in the direction $\hat{u}=\left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right]$.
$f_{\hat{u}}^{\prime}\left(4, \frac{\pi}{3}\right)=\left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right] \cdot[4 \sqrt{3}, 8]=\frac{\sqrt{3}}{2}(4 \sqrt{3})+\frac{1}{2}(8)=10$.
88. What is the derivative of $f(x, y)=x e^{y}$ at the point $(3,0)$ in the direction $[1,1]$? $\nabla f=\left[e^{y}, x e^{y}\right]$ at $(x, y)=(3,0)$ is $\nabla f=\left[e^{0}, 3 e^{0}\right]=[1,3]$, and the unit vector in the direction of $[1,1]$ is

$$
\begin{aligned}
\hat{u} & =\frac{[1,1]}{|[1,1]|}=\frac{[1,1]}{\sqrt{1^{2}+1^{2}}}=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \\
\text { so } f_{\hat{u}}^{\prime}=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \cdot[1,3] & =\frac{4}{\sqrt{2}} \text { or } 2 \sqrt{2} .
\end{aligned}
$$

89. Give a unit vector \hat{u} such that $f_{\hat{u}}^{\prime}(1,1)=0$ for $f(x, y)=x^{3} y^{4}$.
$\nabla f=\left[\begin{array}{l}3 x^{2} y^{4} \\ 4 x^{3} y^{3}\end{array}\right]$ and $\nabla f(1,1)=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. The unit vector in the same direction as this is $\frac{3}{5} \hat{\imath}+\frac{4}{5} \hat{\jmath}$, and the only unit vectors perpendicular to this are $\left[\begin{array}{c}-4 / 5 \\ 3 / 5\end{array}\right]$ or $\left[\begin{array}{c}4 / 5 \\ -3 / 5\end{array}\right]$
90. For $f(x, y)=7 y \sin (x y)$ at the point $(x, y)=(0,2)$,
(a) what are the smallest (most negative) possible value of $f_{\hat{u}}^{\prime}(0,2)$?

$$
\nabla f(x, y)=\left[7 y^{2} \cos (x y), 7 x y \cos (x y)+7 \sin (x y)\right], \text { so } \nabla f(0,2)=[28,0] .
$$

The smallest possible value of $f_{\hat{u}}^{\prime}(0,2)$ is -28 .
(b) give the direction, as a unit vector, in which f decreases as much as possible, that is, the direction in which $f_{\hat{u}}^{\prime}(0,2)$ is most negative.
The opposite direction from $\nabla f(0,2)=[28,0]$, which the same direction as $[-28,0]$. As a unit vector, this is $[-1,0]$.
(c) give a direction, as a unit vector, in which the derivative of f is zero.

Any direction perpendicular to $\nabla f(0,2)=[28,0]$, which will be $[0,1]$ or $[0,-1]$.
91. Give the direction in which $\frac{x+y^{2}}{2 e^{x}}$ increases the most from the point $(1,2)$. This is the direction of $\nabla f(1,2)=\left[\frac{-2}{e}, \frac{2}{e}\right]$, which is North-West \nwarrow. As a unit vector, this direction is $\hat{u}=\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$. The tasks does not specify that the direction should be given as a unit vector, so any positive scalar multiple of $[-1,1]$ is correct.

A critical point (or CP) of a function of multiple variables is a point in the domain of the function where all partial derivatives are zero or where at least one partial derivative is undefined.
92. If $(3,8)$ is a critical point of $f(x, y)$, what is the value of $f_{\hat{u}}^{\prime}(3,8)$ in the direction $\hat{u}=\left[-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right]$? In the direction of $\vec{v}=[8,7] ? 0$ in any direction!
93. Find the critical point(s) of

$$
f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2} .
$$

$\nabla f=\left[\begin{array}{c}6 x(-4+x-y) \\ -3\left(x^{2}+2 y\right)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ at three points: $(0,0),(-4,-8),(2,-2)$
94. Find the critical point(s) of each of the following functions.
(a) $f(x, y)=e^{x}-x y . \nabla f=\left[\begin{array}{c}e^{x}-y \\ -x\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ when $(x, y)=(0,1)$ only.
(b) $f(x, y)=y \ln \left(x^{2}\right) \quad(1,0)$ and $(-1,0)$
(c) $f(x, y)=x \sin (y)+9$ All points $(0, n \pi)$ for $n \in \mathbb{Z}$
(d) $f(x, y)=x^{3}+8 y^{3}-3 x y(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$
95. Find the critical point(s) of $f(x, y, z)=x \ln (z)+y^{3} z .(0,0,1)$
96. Find the critical point(s) of $f(x, y, z)=\frac{1}{3} x^{3}-x+y z-y-z^{2} .(-1,2,1)$ and $(1,2,1)$

The Hessian of $f(x, y)$ is the matrix $\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{y x}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. We write $\mathbf{H} f$ for this matrix.
The Second Derivative Test: For each critical point of a function $f(x, y)$, calculate the "discriminant"

$$
D=\operatorname{det}(\mathbf{H} f)=f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2} .
$$

If $D<0$, then the CP is a saddle (also called a saddle point).
If $D>0$ and $f_{x x}^{\prime \prime}>0$, then the CP is a local minimum.
If $D>0$ and $f_{x x}^{\prime \prime}<0$, then the CP is a local maximum.
If $D=0$, or if $D>0$ but $f_{x x}^{\prime \prime}=0$, then the test does not help classify the CP.
97. Calculate the Hessian of $f(x, y)=x \ln (x y)$ at the point $\left(3, \frac{1}{2}\right)$.

Using Task 61, $\mathbf{H} f=\left[\begin{array}{cc}1 / x & 1 / y \\ 1 / y & -x / y^{2}\end{array}\right]$, so $\mathbf{H} f\left(3, \frac{1}{2}\right)=\left[\begin{array}{cc}1 / 3 & 2 \\ 2 & -12\end{array}\right]$.
98. Calculate the determinant of the Hessian of $f=x^{2} \sin (y)$ at the point $\left(4, \frac{\pi}{3}\right)$.
$\mathbf{H} f\left(4, \frac{\pi}{3}\right)=\left[\begin{array}{cc}\sqrt{3} & 4 \\ 4 & -8 \sqrt{3}\end{array}\right]$, so $\operatorname{det}\left(\mathbf{H} f\left(4, \frac{\pi}{3}\right)\right)=-40$.
99. Find and classify all the critical point(s) of $f(x, y)=2 x^{2}+y^{2}-3 x y$.
$\nabla f=\left[\begin{array}{c}4 x-3 y \\ -3 x+2 y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ only at $(0,0)$.
$\mathbf{H} f(0,0)=\left[\begin{array}{cc}4 & -3 \\ -3 & 2\end{array}\right]$ has determinant $8-9=-1<0$, so $(0,0)$ is a saddle.
100. Find and classify all the critical point(s) of $f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}$.

From Task 93 the CPs are $(0,0),(-4,-8),(2,-2)$.
$H=\left[\begin{array}{cc}12 x-6 y-24 & -6 x \\ -6 x & -6\end{array}\right]$
$D=(12 x-6 y-24)(-6)-(-6 x)^{2}=36\left(y-2 x-x^{2}+4\right)$.

x	y	D	$f_{x x}^{\prime \prime}$	
0	0	+	-	local max at $(0,0)$
-4	-8	-		saddle at $(-4,-8)$
2	-2	-		saddle at $(2,-2)$

101. Suppose $f(x, y)$ is a twice-differentiable function and that

$$
\begin{array}{rlrl}
f(-3,0) & =5, & f(4,9) & =37, \\
f_{x}^{\prime}(-3,0) & =0, & f_{x}^{\prime}(4,9) & =0, \\
f_{y}^{\prime}(-3,0) & =1, & f_{y}^{\prime}(4,9) & =0, \\
f_{x x}^{\prime \prime}(-3,0) & =0, & f_{x x}^{\prime \prime}(4,9) & =4, \\
f_{x y}^{\prime \prime}(-3,0) & =-4, & f_{x y}^{\prime \prime}(4,9) & =2, \\
f_{y y}^{\prime \prime}(-3,0) & =12, & f_{y y}^{\prime \prime}(1,-8) & =0, \\
& =11, & f_{y}^{\prime}(1,-8) & =0, \\
f_{x x}^{\prime \prime}(1,-8) & =1, \\
\prime \prime & f_{x y}^{\prime \prime}(1,-8) & =2, \\
f_{y y}^{\prime \prime}(1,-8) & =1 .
\end{array}
$$

(a) Is $(-3,0)$ a critical point of f ? No because $f_{y}^{\prime}(-3,0) \neq 0$. Is $(4,9)$? Yes. Is $(1,-8)$? Yes.
(b) Is $(-3,0)$ a local minimum of f ? No because $(-3,0)$ is not a critical point. Is $(4,9)$? Yes because $\nabla f(4,9)=[0,0]$ and $\operatorname{det} \mathbf{H} f(4,9)=\operatorname{det}\left[\begin{array}{cc}4 & 2 \\ 2 & 11\end{array}\right]=44-$ $4=40>0$ and $f_{x x}^{\prime \prime}(4,9)=4>0$. Is $(1,-8) ?$ No because $\operatorname{det} \mathbf{H} f(1,-8)=$ $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=-3<0$.
(c) Is $(-3,0)$ a local maximum of f ? No. Is $(4,9)$? No. Is $(1,-8)$? No.
(d) Is $(-3,0)$ a saddle point of f ? No. Is (4, 9)? No because $\operatorname{det} \mathbf{H} f(4,9)>0$. Is $(1,-8)$? Yes because $\nabla f(1,-8)=[0,0]$ and $\operatorname{det} \mathbf{H} f(1,-8)<0$.
102. Find and classify the CP of the function $f(x, y)$ for which $\nabla f(x, y)=\left[\begin{array}{c}3 x^{2}-3 y \\ 24 y^{2}-3 x\end{array}\right]$.

The solutions to $\nabla f=\overrightarrow{0}$ are $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$ (this is exactly Task 94 (d)). Using $f_{x}^{\prime}=3 x^{2}-3 y$ and $f_{y}^{\prime}=24 y^{2}-3 x$, we get that

$$
\begin{aligned}
& f_{x x}^{\prime \prime}=\frac{\partial}{\partial x}\left[3 x^{2}-3 y\right]=6 x \\
& f_{y y}^{\prime \prime}=\frac{\partial}{\partial y}\left[24 y^{2}-3 x\right]=48 \\
& f_{x y}^{\prime \prime}=\frac{\partial}{\partial y}\left[3 x^{2}-3 y\right]=-3 \text { or } \frac{\partial}{\partial x}\left[24 y^{2}-3 x\right]=-3
\end{aligned}
$$

And thus

$$
\mathbf{H} f=\left[\begin{array}{cc}
6 x & -3 \\
-3 & 48
\end{array}\right], \quad \operatorname{det}(\mathbf{H} f)=288 x-9
$$

At the point $(0,0)$, we have $\operatorname{det}(\mathbf{H} f)=0-9<0$, so $(0,0)$ is a saddle. At the point $\left(\frac{1}{2}, \frac{1}{4}\right)$, we have $\operatorname{det}(\mathbf{H} f)=144-9>0$ and $f_{x x}^{\prime \prime}=3>0$, so $\left(\frac{1}{2}, \frac{1}{4}\right)$ is a local min.
103. Match each gradient vector with the Hessian matrix for the same function.
(a) $\nabla f=\left[\begin{array}{c}3 x^{2}+y \\ x+30 y^{2}\end{array}\right]$
(I) $\mathbf{H} f=\left[\begin{array}{cc}90 x^{8}+2 y^{3} & 6 x y^{2} \\ 6 x y^{2} & 6 x^{2} y\end{array}\right]$
(b) $\nabla f=\left[\begin{array}{c}3 x^{2}+y \\ x+15 y^{4}\end{array}\right]$
(II) $\mathbf{H} f=\left[\begin{array}{cc}6 x & 1 \\ 1 & 60 y^{3}\end{array}\right]$
(c) $\nabla f=\left[\begin{array}{c}10 x^{9}+2 x y^{3} \\ 3 x^{2} y^{2}+1\end{array}\right]$
(III) $\mathbf{H} f=\left[\begin{array}{cc}40 x^{3}+2 y^{3} & 6 x y^{2} \\ 6 x y^{2} & 6 x^{2} y\end{array}\right]$
(d) $\nabla f=\left[\begin{array}{c}10 x^{4}+2 x y^{3} \\ 3 x^{2} y^{2}+1\end{array}\right]$
(IV) $\mathbf{H} f=\left[\begin{array}{cc}6 x & 1 \\ 1 & 60 y\end{array}\right]$
a-IV, b-II, c-I, d-III
104. Evaluate the iterated integral $\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y \mathrm{~d} x$ by following these steps:
(a) Calculate $\int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y$. Your answer should be a formula involving x.

$$
\left[\frac{y^{2}}{2 x}+x \ln (y)\right]_{y=1}^{y=2}=\frac{3}{2 x}+x \ln (2)
$$

(b) Calculate $\int_{1}^{4} f(x) \mathrm{d} x$, where $f(x)$ is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y \mathrm{~d} x$. $\left[\frac{3}{2} \ln (x)+\frac{1}{2} \ln (2) x^{2}\right]_{x=1}^{x=4}=\frac{21}{2} \ln (2)$
105. Evaluate (that is, find the value of) the following iterated integrals:
(a) $\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} y \mathrm{~d} x$.

$$
\begin{aligned}
\int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} y & =\left[4 x^{3} y-3 x^{2} y^{3}\right]_{y=1}^{y=2} \\
& =\left(8 x^{3}-24 x^{2}\right)-\left(4 x^{3}-3 x^{2}\right) \\
& =4 x^{3}-21 x^{2} \\
\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{1}\left(4 x^{3}-21 x^{2}\right) \mathrm{d} x \\
& =\left[x^{4}-7 x^{3}\right]_{x=0}^{x=1} \\
& =1-7=-6
\end{aligned}
$$

(b) $\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y \cdot \int_{0}^{1}\left(15-21 y^{2}\right) \mathrm{d} y=8$
(c) $\int_{1}^{2} \int_{0}^{1}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y \cdot \int_{1}^{2}\left(1-y^{3}\right) \mathrm{d} y=-6$
106. Calculate $\int_{0}^{\pi} \int_{0}^{1}(\sin \theta) e^{r^{2}} r \mathrm{~d} r \mathrm{~d} \theta . e-1$
107. Evaluate the iterated integral $\int_{2}^{4} \int_{1}^{y} x y \mathrm{~d} x \mathrm{~d} y$ by following these steps:
(a) Calculate $\int_{1}^{y} x y \mathrm{~d} x$. Your answer should be a formula involving $y \cdot \frac{y^{3}}{2}-\frac{y}{2}$
(b) Calculate $\int_{2}^{4} g(y) \mathrm{d} y$, where $g(y)$ is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{2}^{4} \int_{1}^{y} x y \mathrm{~d} x \mathrm{~d} y$. 27
108. Evaluate $\int_{0}^{3} \int_{0}^{2 y} \sin \left(\pi y^{2}\right) \mathrm{d} x \mathrm{~d} y . \frac{2}{\pi}$
109. Calculate $\int_{0}^{\pi / 2} \int_{x / 2}^{\sqrt{\sin x}} 8 y \mathrm{~d} y \mathrm{~d} x$.

$$
\int_{0}^{\pi / 2}\left(\left.4 y^{2}\right|_{y=x / 2} ^{y=\sqrt{\sin x}}\right) \mathrm{d} x=\int_{0}^{\pi / 2}\left(4 \sin (x)-x^{2}\right) \mathrm{d} x=\left[-4 \cos (x)+\frac{1}{3} x^{3}\right]_{x=0}^{x=\pi / 2}=\frac{\pi^{3}}{24}-4
$$

